Blogia
Matemolivares

Geometría en "El Retrato de Giovanni Arnolfini y su esposa ", de Van Eyck.

              Van Eyck - Arnolfini Portrait.jpg

Este cuadro -óleo sobre tabla de roble-: "Retrato de Giovanni Arnolfini y su esposa" del pintor flamenco Jan Van Eyck, que data de 1434, provoca eternas discusiones entre los historiadores del arte, en cuanto al simbolismo utilizado por el artista, la técnica que utiliza -aplica capa sobre capa de colores translúcidos, y  la imagen que el cuadro representa: una boda ¿por lo civil? de hace más de 500 años, además de la perspectiva geométrica ortogonal -inusual- que utiliza. Está en la National Gallery de Lomdres. después de haber desaparecido misteriosamente del Palacio Real de Madrid en 1813.

 Nosotros nos vamos a fijar en el espejo que aparece en el centro de la escena:

The Arnolfini Portrait, détail.jpg

Mide 5,5 cm. y se trata de una minuciosidad microscópica -¡una joya en miniatura, diríamos!-, digna de un relojero. Rodeado por 10 círculos, de 1,5 cm., que representan 10 de las 14 estaciones del Vía Crucis. Dos círculos concéntricos, en el que al más grande se le ha extraído 10 semicírculos, pareciendo una rueda dentada; y un espejo convexo en el círculo central, ¡¡donde aparece el pintor!! (¡esta idea fue la que utilizó Velázquez para pintar "Las Meninas"!). Estos espejos eran muy populares en aquellos tiempos del bajo Renacimiento, pero es la primera vez que se utiliza como recurso pictórico. Para otros  autores, la imagen reflejada es una descripción de geometría no euclideana: en el espejo esférico la distorsión no corresponde correctamente en la parte izquierda -marco de la ventana, borde de la mesa y dobladillo del vestido-.          

Firma                 

 Desde luego, alguien adelantado a su tiempo. AMJ

0 comentarios