Blogia
Matemolivares

Resuelto un problema matemático de hace 80 años.

 

El matemático húngaro Simon Sidon planteó, en 1932, al entonces estudiante Paul Erdös un problema fácil de formular, pero muy difícil de solucionar. Tanto, que no ha sido vencido definitivamente hasta ahora; dos matemáticos españoles, junto a un húngaro, han dado con la respuesta.

 Javier CillerueloImre RuzsaCarlos Vinuesa

Los conjuntos de Sidon son conjuntos de enteros positivos con la propiedad de que todas las sumas de dos elementos del conjunto son distintas.

Por ejemplo, {1, 2, 5, 10, 16, 23, 33, 35} es un conjunto de Sidon mientras que  {1, 3, 7, 10, 17, 23, 28, 35} no lo es porque aparecen sumas repetidas: 1+23=7+17.

¿Cuál es el mayor tamaño que puede tener un conjunto de Sidon en {1, . . , n}? ¿Y si permitimos que cada suma pueda aparecer hasta g veces? (conjuntos g-Sidon)

Este fue el problema planteado en 1932 por Simon Sidon, un analista húngaro, a Paul Erdos. Aunque el interés de Sidon por estos conjuntos tenía que ver con cuestiones del análisis, el problema cautivó a un joven Erdös por su vertiente aritmética y combinatoria, y se convertiría en un tema recurrente en su investigación. Erdös fue uno de los grandes matemáticos del siglo XX y el más prolífico de todos los tiempos, solo superado por Euler.

Mientras el problema para el caso g=1, donde todas las sumas son distintas, no tardó mucho en resolverse por el propio Erdös, determinar el tamaño de estos conjuntos para valores mayores de g, ha sido un misterio desde entonces y ha atraído la atención de muchos matemáticos, entre otros de Paul Erdos y de Ben Green. Este último es mundialmente conocido por haber demostrado, junto al medalla Fields, Terence Tao, que la sucesión de los primos contiene progresiones aritméticas arbitrariamente largas.

Javier Cilleruelo, Carlos Vinuesa e Imre Ruzsa han resuelto finalmente este problema en el artículo “Generalized Sidon Sets” (Advances of Mathematics, vol 225, nº5  (2010)), utilizando nuevas herramientas probabilísticas, algebraicas y combinatorias. El resultado ha sido inesperado porque se pensaba que los conjuntos g-Sidon en {1,…, n} no podían ser tan grandes como finalmente se ha demostrado.

(ICM, Madrid Nov 2010)

0 comentarios